四元子代数
在下表列出了构成这个特定十六元数乘法表的35个三元组。用于使用凯莱-迪克森结构构造之十六元数的7个八元数三元组,以粗体表示:
每个三元组中,三个数的二进制表示,按位异或的结果为0。
{ {1, 2, 3}, {1, 4, 5}, {1, 7, 6}, {1, 8, 9}, {1, 11, 10}, {1, 13, 12}, {1, 14, 15},
{2, 4, 6}, {2, 5, 7}, {2, 8, 10}, {2, 9, 11}, {2, 14, 12}, {2, 15, 13}, {3, 4, 7},
{3, 6, 5}, {3, 8, 11}, {3, 10, 9}, {3, 13, 14}, {3, 15, 12}, {4, 8, 12}, {4, 9, 13},
{4, 10, 14}, {4, 11, 15}, {5, 8, 13}, {5, 10, 15}, {5, 12, 9}, {5, 14, 11}, {6, 8, 14},
{6, 11, 13}, {6, 12, 10}, {6, 15, 9}, {7, 8, 15}, {7, 9, 14}, {7, 12, 11}, {7, 13, 10} }
84组由十六元数单位组成的零因子数组
{
e
a
,
e
b
,
e
c
,
e
d
}
{\displaystyle \{e_{a},e_{b},e_{c},e_{d}\}}
列举如下,其中
(
e
a
+
e
b
)
∘
(
e
c
+
e
d
)
=
0
{\displaystyle (e_{a}+e_{b})\circ (e_{c}+e_{d})=0}
:
1
≤
a
≤
6
,
c
>
a
,
9
≤
b
≤
15
9
≤
d
≤
15
−
9
≥
d
≥
−
15
{
e
1
,
e
10
,
e
5
,
e
14
}
{
e
1
,
e
10
,
e
4
,
−
e
15
}
{
e
1
,
e
10
,
e
7
,
e
12
}
{
e
1
,
e
10
,
e
6
,
−
e
13
}
{
e
1
,
e
11
,
e
4
,
e
14
}
{
e
1
,
e
11
,
e
6
,
−
e
12
}
{
e
1
,
e
11
,
e
5
,
e
15
}
{
e
1
,
e
11
,
e
7
,
−
e
13
}
{
e
1
,
e
12
,
e
2
,
e
15
}
{
e
1
,
e
12
,
e
3
,
−
e
14
}
{
e
1
,
e
12
,
e
6
,
e
11
}
{
e
1
,
e
12
,
e
7
,
−
e
10
}
{
e
1
,
e
13
,
e
6
,
e
10
}
{
e
1
,
e
13
,
e
7
,
−
e
14
}
{
e
1
,
e
13
,
e
7
,
e
11
}
{
e
1
,
e
13
,
e
3
,
−
e
15
}
{
e
1
,
e
14
,
e
2
,
e
13
}
{
e
1
,
e
14
,
e
4
,
−
e
11
}
{
e
1
,
e
14
,
e
3
,
e
12
}
{
e
1
,
e
14
,
e
5
,
−
e
10
}
{
e
1
,
e
15
,
e
3
,
e
13
}
{
e
1
,
e
15
,
e
2
,
−
e
12
}
{
e
1
,
e
15
,
e
4
,
e
10
}
{
e
1
,
e
15
,
e
5
,
−
e
11
}
{
e
2
,
e
9
,
e
4
,
e
15
}
{
e
2
,
e
9
,
e
5
,
−
e
14
}
{
e
2
,
e
9
,
e
6
,
e
13
}
{
e
2
,
e
9
,
e
7
,
−
e
12
}
{
e
2
,
e
11
,
e
5
,
e
12
}
{
e
2
,
e
11
,
e
4
,
−
e
13
}
{
e
2
,
e
11
,
e
6
,
e
15
}
{
e
2
,
e
11
,
e
7
,
−
e
14
}
{
e
2
,
e
12
,
e
3
,
e
13
}
{
e
2
,
e
12
,
e
5
,
−
e
11
}
{
e
2
,
e
12
,
e
7
,
e
9
}
{
e
2
,
e
13
,
e
3
,
−
e
12
}
{
e
2
,
e
13
,
e
4
,
e
11
}
{
e
2
,
e
13
,
e
6
,
−
e
9
}
{
e
2
,
e
14
,
e
5
,
e
9
}
{
e
2
,
e
14
,
e
3
,
−
e
15
}
{
e
2
,
e
14
,
e
3
,
e
14
}
{
e
2
,
e
15
,
e
4
,
−
e
9
}
{
e
2
,
e
15
,
e
3
,
e
14
}
{
e
2
,
e
15
,
e
6
,
−
e
11
}
{
e
3
,
e
9
,
e
6
,
e
12
}
{
e
3
,
e
9
,
e
4
,
−
e
14
}
{
e
3
,
e
9
,
e
7
,
e
13
}
{
e
3
,
e
9
,
e
5
,
−
e
15
}
{
e
3
,
e
10
,
e
4
,
e
13
}
{
e
3
,
e
10
,
e
5
,
−
e
12
}
{
e
3
,
e
10
,
e
7
,
e
14
}
{
e
3
,
e
10
,
e
6
,
−
e
15
}
{
e
3
,
e
12
,
e
5
,
e
10
}
{
e
3
,
e
12
,
e
6
,
−
e
9
}
{
e
3
,
e
14
,
e
4
,
e
9
}
{
e
3
,
e
13
,
e
4
,
−
e
10
}
{
e
3
,
e
15
,
e
5
,
e
9
}
{
e
3
,
e
13
,
e
7
,
−
e
9
}
{
e
3
,
e
15
,
e
6
,
e
10
}
{
e
3
,
e
14
,
e
7
,
−
e
10
}
{
e
4
,
e
9
,
e
7
,
e
10
}
{
e
4
,
e
9
,
e
6
,
−
e
11
}
{
e
4
,
e
10
,
e
5
,
e
11
}
{
e
4
,
e
10
,
e
7
,
−
e
9
}
{
e
4
,
e
11
,
e
6
,
e
9
}
{
e
4
,
e
11
,
e
5
,
−
e
10
}
{
e
4
,
e
13
,
e
6
,
e
15
}
{
e
4
,
e
13
,
e
7
,
−
e
14
}
{
e
4
,
e
14
,
e
7
,
e
13
}
{
e
4
,
e
14
,
e
5
,
−
e
15
}
{
e
4
,
e
15
,
e
5
,
e
14
}
{
e
4
,
e
15
,
e
6
,
−
e
13
}
{
e
5
,
e
10
,
e
6
,
e
9
}
{
e
5
,
e
9
,
e
6
,
−
e
10
}
{
e
5
,
e
11
,
e
7
,
e
9
}
{
e
5
,
e
9
,
e
7
,
−
e
11
}
{
e
5
,
e
12
,
e
7
,
e
14
}
{
e
5
,
e
12
,
e
6
,
−
e
15
}
{
e
5
,
e
15
,
e
6
,
e
12
}
{
e
5
,
e
14
,
e
7
,
−
e
12
}
{
e
6
,
e
11
,
e
7
,
e
10
}
{
e
6
,
e
10
,
e
7
,
−
e
11
}
{
e
6
,
e
13
,
e
7
,
e
12
}
{
e
6
,
e
10
,
e
7
,
−
e
13
}
{\displaystyle {\begin{array}{c}{\begin{array}{ccc}1\leq a\leq 6,&c>a,&9\leq b\leq 15\\9\leq d\leq 15&&-9\geq d\geq -15\end{array}}\\{\begin{array}{ll}\{e_{1},e_{10},e_{5},e_{14}\}&\{e_{1},e_{10},e_{4},-e_{15}\}\\\{e_{1},e_{10},e_{7},e_{12}\}&\{e_{1},e_{10},e_{6},-e_{13}\}\\\{e_{1},e_{11},e_{4},e_{14}\}&\{e_{1},e_{11},e_{6},-e_{12}\}\\\{e_{1},e_{11},e_{5},e_{15}\}&\{e_{1},e_{11},e_{7},-e_{13}\}\\\{e_{1},e_{12},e_{2},e_{15}\}&\{e_{1},e_{12},e_{3},-e_{14}\}\\\{e_{1},e_{12},e_{6},e_{11}\}&\{e_{1},e_{12},e_{7},-e_{10}\}\\\{e_{1},e_{13},e_{6},e_{10}\}&\{e_{1},e_{13},e_{7},-e_{14}\}\\\{e_{1},e_{13},e_{7},e_{11}\}&\{e_{1},e_{13},e_{3},-e_{15}\}\\\{e_{1},e_{14},e_{2},e_{13}\}&\{e_{1},e_{14},e_{4},-e_{11}\}\\\{e_{1},e_{14},e_{3},e_{12}\}&\{e_{1},e_{14},e_{5},-e_{10}\}\\\{e_{1},e_{15},e_{3},e_{13}\}&\{e_{1},e_{15},e_{2},-e_{12}\}\\\{e_{1},e_{15},e_{4},e_{10}\}&\{e_{1},e_{15},e_{5},-e_{11}\}\\\{e_{2},e_{9},e_{4},e_{15}\}&\{e_{2},e_{9},e_{5},-e_{14}\}\\\{e_{2},e_{9},e_{6},e_{13}\}&\{e_{2},e_{9},e_{7},-e_{12}\}\\\{e_{2},e_{11},e_{5},e_{12}\}&\{e_{2},e_{11},e_{4},-e_{13}\}\\\{e_{2},e_{11},e_{6},e_{15}\}&\{e_{2},e_{11},e_{7},-e_{14}\}\\\{e_{2},e_{12},e_{3},e_{13}\}&\{e_{2},e_{12},e_{5},-e_{11}\}\\\{e_{2},e_{12},e_{7},e_{9}\}&\{e_{2},e_{13},e_{3},-e_{12}\}\\\{e_{2},e_{13},e_{4},e_{11}\}&\{e_{2},e_{13},e_{6},-e_{9}\}\\\{e_{2},e_{14},e_{5},e_{9}\}&\{e_{2},e_{14},e_{3},-e_{15}\}\\\{e_{2},e_{14},e_{3},e_{14}\}&\{e_{2},e_{15},e_{4},-e_{9}\}\\\{e_{2},e_{15},e_{3},e_{14}\}&\{e_{2},e_{15},e_{6},-e_{11}\}\\\{e_{3},e_{9},e_{6},e_{12}\}&\{e_{3},e_{9},e_{4},-e_{14}\}\\\{e_{3},e_{9},e_{7},e_{13}\}&\{e_{3},e_{9},e_{5},-e_{15}\}\\\{e_{3},e_{10},e_{4},e_{13}\}&\{e_{3},e_{10},e_{5},-e_{12}\}\\\{e_{3},e_{10},e_{7},e_{14}\}&\{e_{3},e_{10},e_{6},-e_{15}\}\\\{e_{3},e_{12},e_{5},e_{10}\}&\{e_{3},e_{12},e_{6},-e_{9}\}\\\{e_{3},e_{14},e_{4},e_{9}\}&\{e_{3},e_{13},e_{4},-e_{10}\}\\\{e_{3},e_{15},e_{5},e_{9}\}&\{e_{3},e_{13},e_{7},-e_{9}\}\\\{e_{3},e_{15},e_{6},e_{10}\}&\{e_{3},e_{14},e_{7},-e_{10}\}\\\{e_{4},e_{9},e_{7},e_{10}\}&\{e_{4},e_{9},e_{6},-e_{11}\}\\\{e_{4},e_{10},e_{5},e_{11}\}&\{e_{4},e_{10},e_{7},-e_{9}\}\\\{e_{4},e_{11},e_{6},e_{9}\}&\{e_{4},e_{11},e_{5},-e_{10}\}\\\{e_{4},e_{13},e_{6},e_{15}\}&\{e_{4},e_{13},e_{7},-e_{14}\}\\\{e_{4},e_{14},e_{7},e_{13}\}&\{e_{4},e_{14},e_{5},-e_{15}\}\\\{e_{4},e_{15},e_{5},e_{14}\}&\{e_{4},e_{15},e_{6},-e_{13}\}\\\{e_{5},e_{10},e_{6},e_{9}\}&\{e_{5},e_{9},e_{6},-e_{10}\}\\\{e_{5},e_{11},e_{7},e_{9}\}&\{e_{5},e_{9},e_{7},-e_{11}\}\\\{e_{5},e_{12},e_{7},e_{14}\}&\{e_{5},e_{12},e_{6},-e_{15}\}\\\{e_{5},e_{15},e_{6},e_{12}\}&\{e_{5},e_{14},e_{7},-e_{12}\}\\\{e_{6},e_{11},e_{7},e_{10}\}&\{e_{6},e_{10},e_{7},-e_{11}\}\\\{e_{6},e_{13},e_{7},e_{12}\}&\{e_{6},e_{10},e_{7},-e_{13}\}\end{array}}\end{array}}}